Nonexistence of Lyapunov exponents for matrix cocycles
نویسندگان
چکیده
منابع مشابه
Lyapunov Exponents For Some Quasi-Periodic Cocycles
We consider SL(2,R)-valued cocycles over rotations of the circle and prove that they are likely to have Lyapunov exponents ≈ ± logλ if the norms of all of the matrices are ≈ λ. This is proved for λ sufficiently large. The ubiquity of elliptic behavior is also observed. Consider an area preserving diffeomorphism f of a compact surface. Assume that f is not uniformly hyperbolic, but that it has o...
متن کاملProperties of Lyapunov Exponents for Quasiperodic Cocycles with Singularities
We consider the quasi-periodic cocycles (ω, A(x, E)) : (x, v) 7→ (x+ω, A(x, E)v) with ω Diophantine. Let M2(C) be a normed space endowed with the matrix norm, whose elements are the 2 × 2 matrices. Assume that A : T × E → M2(C) is jointly continuous, depends analytically on x ∈ T and is Hölder continuous in E ∈ E , where E is a compact metric space and T is the torus. We prove that if two Lyapu...
متن کاملDensity of Positive Lyapunov Exponents for Sl(2,r)-cocycles
1. Under suitable smoothness assumptions, quasiperiodicity, and hence the absence of any kind of hyperbolicity, is non-negligible in a measure-theoretical sense [Kol] (under suitable smoothness assumptions). 2. In low regularity (C), failure of non-uniform hyperbolicity (here nonuniform hyperbolicity can be understood as positivity of the metric entropy) is a fairly robust phenomenon in the top...
متن کاملStochastic Stability of Lyapunov Exponents and Oseledets Splittings for Semi-invertible Matrix Cocycles
We establish (i) stability of Lyapunov exponents and (ii) convergence in probability of Oseledets spaces for semi-invertible matrix cocycles, subjected to small random perturbations. The first part extends results of Ledrappier and Young [18] to the semiinvertible setting. The second part relies on the study of evolution of subspaces in the Grassmannian, where the analysis developed, based on h...
متن کاملOn Lyapunov Exponents of Continuous Schrödinger Cocycles over Irrational Rotations
In this note, we consider continuous, SL(2,R)-valued, Schrödinger cocycles over irrational rotations. We prove two generic results on the Lyapunov exponents which improve the corresponding ones contained in [3].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2017
ISSN: 0246-0203
DOI: 10.1214/15-aihp733